

QuakeC Reference Manual

By:
David “DarkGrue” Hesprich
darkgrue@iname.com

Last Revision: � SAVEDATE \@ "MMMM d, yyyy" * MERGEFORMAT �February 4, 1998��Table of Contents

� TOC \o "2-3" \t "Heading 1,1" �1.	Introduction	� PAGEREF _Toc411264243 \h ��1�
1.1.	What is QuakeC?	� PAGEREF _Toc411264244 \h ��1�
1.1.	Contributions	� PAGEREF _Toc411264245 \h ��1�
2.	Lexical Elements	� PAGEREF _Toc411264246 \h ��2�
2.1.	Delimiters	� PAGEREF _Toc411264247 \h ��2�
2.2.	Whitespace	� PAGEREF _Toc411264248 \h ��2�
2.3.	Identifiers	� PAGEREF _Toc411264249 \h ��2�
2.4.	Literals	� PAGEREF _Toc411264250 \h ��3�
2.4.1.	Numeric Literals	� PAGEREF _Toc411264251 \h ��3�
2.4.2.	String Literals	� PAGEREF _Toc411264252 \h ��3�
2.4.3.	Built-in Functions	� PAGEREF _Toc411264253 \h ��3�
2.5.	Comments	� PAGEREF _Toc411264254 \h ��4�
2.6.	Model Pragma	� PAGEREF _Toc411264255 \h ��5�
2.6.1.	Animation Flags	� PAGEREF _Toc411264256 \h ��5�
2.6.2.	Base	� PAGEREF _Toc411264257 \h ��5�
2.6.3.	Directory	� PAGEREF _Toc411264258 \h ��5�
2.6.4.	Frame Definitions	� PAGEREF _Toc411264259 \h ��5�
2.6.5.	Model Name	� PAGEREF _Toc411264260 \h ��5�
2.6.6.	Origin	� PAGEREF _Toc411264261 \h ��5�
2.6.7.	Scale Factor	� PAGEREF _Toc411264262 \h ��5�
2.6.8.	Skin File	� PAGEREF _Toc411264263 \h ��6�
3.	Declarations and Types	� PAGEREF _Toc411264264 \h ��7�
3.1.	Types	� PAGEREF _Toc411264265 \h ��7�
3.2.	Simple Types	� PAGEREF _Toc411264266 \h ��7�
3.2.2.	Field Types	� PAGEREF _Toc411264267 \h ��8�
3.2.3.	Reserved Field Types	� PAGEREF _Toc411264268 \h ��8�
3.3.	Definition of Variables	� PAGEREF _Toc411264269 \h ��8�
3.4.	Definition of Constants (Immediates)	� PAGEREF _Toc411264270 \h ��9�
4.	Names and Expressions	� PAGEREF _Toc411264271 \h ��10�
4.1.	Names	� PAGEREF _Toc411264272 \h ��10�
4.2.	Expressions	� PAGEREF _Toc411264273 \h ��10�
4.3.	Operators and Expression Evaluation	� PAGEREF _Toc411264274 \h ��10�
4.3.1.	Logical Operators	� PAGEREF _Toc411264275 \h ��10�
4.3.2.	Relational Operators	� PAGEREF _Toc411264276 \h ��10�
4.3.3.	Binary Adding Operators	� PAGEREF _Toc411264277 \h ��10�
4.3.4.	Unary Adding Operators	� PAGEREF _Toc411264278 \h ��11�
4.3.5.	Multiplying Operators	� PAGEREF _Toc411264279 \h ��11�
5.	Statements	� PAGEREF _Toc411264280 \h ��12�
5.1.	Assignment Statements	� PAGEREF _Toc411264281 \h ��12�
5.2.	If Statements	� PAGEREF _Toc411264282 \h ��12�
5.3.	Loop Statements	� PAGEREF _Toc411264283 \h ��12�
6.	Subprograms	� PAGEREF _Toc411264284 \h ��13�
6.1.	Subprogram Declaration	� PAGEREF _Toc411264285 \h ��13�
6.2.	Subprogram Specification	� PAGEREF _Toc411264286 \h ��13�
6.3.	Subprogram Calls	� PAGEREF _Toc411264287 \h ��13�
7.	Predefined Constants	� PAGEREF _Toc411264288 \h ��14�
7.1.	Entities	� PAGEREF _Toc411264289 \h ��14�
7.1.1.	Temporary Entities	� PAGEREF _Toc411264290 \h ��14�
7.2.	Items	� PAGEREF _Toc411264291 \h ��15�
7.2.1.	Behavior of Solid Objects	� PAGEREF _Toc411264292 \h ��16�
7.2.2.	Movement Types	� PAGEREF _Toc411264293 \h ��17�
7.2.3.	Entity Damage Types	� PAGEREF _Toc411264294 \h ��17�
7.2.4.	Entity Dead Flag	� PAGEREF _Toc411264295 \h ��18�
7.2.5.	Spawnflags	� PAGEREF _Toc411264296 \h ��19�
7.3.	Light Effects	� PAGEREF _Toc411264297 \h ��20�
7.4.	Point Contents	� PAGEREF _Toc411264298 \h ��20�
7.5.	Protocol Messages	� PAGEREF _Toc411264299 \h ��20�
7.5.1.	Message Routing	� PAGEREF _Toc411264300 \h ��20�
7.5.2.	Message Types	� PAGEREF _Toc411264301 \h ��21�
7.6.	Sound	� PAGEREF _Toc411264302 \h ��21�
7.6.1.	Attenuation	� PAGEREF _Toc411264303 \h ��21�
7.6.2.	Channel	� PAGEREF _Toc411264304 \h ��21�
8.	Predefined Global Variables	� PAGEREF _Toc411264305 \h ��22�
8.1.	coop	� PAGEREF _Toc411264306 \h ��22�
8.2.	deathmatch	� PAGEREF _Toc411264307 \h ��22�
8.3.	force_retouch	� PAGEREF _Toc411264308 \h ��22�
8.4.	found_secrets	� PAGEREF _Toc411264309 \h ��22�
8.5.	frametime	� PAGEREF _Toc411264310 \h ��22�
8.6.	killed_monsters	� PAGEREF _Toc411264311 \h ��22�
8.7.	mapname	� PAGEREF _Toc411264312 \h ��22�
8.8.	msg_entity	� PAGEREF _Toc411264313 \h ��23�
8.9.	other	� PAGEREF _Toc411264314 \h ��23�
8.10.	parm1…parm16	� PAGEREF _Toc411264315 \h ��23�
8.11.	self	� PAGEREF _Toc411264316 \h ��23�
8.12.	serverflags	� PAGEREF _Toc411264317 \h ��23�
8.13.	teamplay	� PAGEREF _Toc411264318 \h ��23�
8.14.	time	� PAGEREF _Toc411264319 \h ��23�
8.15.	total_monsters	� PAGEREF _Toc411264320 \h ��23�
8.16.	total_secrets	� PAGEREF _Toc411264321 \h ��23�
8.17.	world	� PAGEREF _Toc411264322 \h ��24�
9.	Entities	� PAGEREF _Toc411264323 \h ��25�
9.1.	Types of Entities	� PAGEREF _Toc411264324 \h ��25�
9.1.1.	Static entities	� PAGEREF _Toc411264325 \h ��25�
9.1.2.	Temporary entities	� PAGEREF _Toc411264326 \h ��25�
9.1.3.	Dynamic entities	� PAGEREF _Toc411264327 \h ��25�
9.2.	Predefined Entity Fields	� PAGEREF _Toc411264328 \h ��26�
9.2.1.	Fields Shared between QUAKE.EXE and QuakeC	� PAGEREF _Toc411264329 \h ��26�
9.2.2.	Fields used only by QuakeC	� PAGEREF _Toc411264330 \h ��31�
10.	Built-in Functions	� PAGEREF _Toc411264331 \h ��36�
10.1.	Basic Math Functions	� PAGEREF _Toc411264332 \h ��36�
10.1.1.	anglemod	� PAGEREF _Toc411264333 \h ��36�
10.1.2.	ceil	� PAGEREF _Toc411264334 \h ��36�
10.1.3.	fabs	� PAGEREF _Toc411264335 \h ��36�
10.1.4.	floor	� PAGEREF _Toc411264336 \h ��36�
10.1.5.	ftos	� PAGEREF _Toc411264337 \h ��36�
10.1.6.	random	� PAGEREF _Toc411264338 \h ��36�
10.1.7.	rint	� PAGEREF _Toc411264339 \h ��36�
10.2.	Basic Vector Math Functions	� PAGEREF _Toc411264340 \h ��37�
10.2.1.	makevectors	� PAGEREF _Toc411264341 \h ��37�
10.2.2.	normalize	� PAGEREF _Toc411264342 \h ��37�
10.2.3.	vlen	� PAGEREF _Toc411264343 \h ��37�
10.2.4.	vectoangles	� PAGEREF _Toc411264344 \h ��37�
10.2.5.	vectoyaw	� PAGEREF _Toc411264345 \h ��37�
10.2.6.	vtos	� PAGEREF _Toc411264346 \h ��37�
10.3.	Collision Checking Functions	� PAGEREF _Toc411264347 \h ��38�
10.3.1.	checkbottom	� PAGEREF _Toc411264348 \h ��38�
10.3.2.	checkpos	� PAGEREF _Toc411264349 \h ��38�
10.3.3.	pointcontents	� PAGEREF _Toc411264350 \h ��38�
10.3.4.	traceline	� PAGEREF _Toc411264351 \h ��38�
10.4.	Combat Functions	� PAGEREF _Toc411264352 \h ��39�
10.4.1.	aim	� PAGEREF _Toc411264353 \h ��39�
10.4.2.	checkclient	� PAGEREF _Toc411264354 \h ��39�
10.4.3.	particle	� PAGEREF _Toc411264355 \h ��39�
10.5.	Console Functions	� PAGEREF _Toc411264356 \h ��39�
10.5.1.	cvar	� PAGEREF _Toc411264357 \h ��39�
10.5.2.	cvar_set	� PAGEREF _Toc411264358 \h ��39�
10.5.3.	dprint	� PAGEREF _Toc411264359 \h ��40�
10.5.4.	localcmd	� PAGEREF _Toc411264360 \h ��40�
10.6.	Debug Functions	� PAGEREF _Toc411264361 \h ��40�
10.6.1.	break	� PAGEREF _Toc411264362 \h ��40�
10.6.2.	coredump	� PAGEREF _Toc411264363 \h ��40�
10.6.3.	eprint	� PAGEREF _Toc411264364 \h ��40�
10.6.4.	error	� PAGEREF _Toc411264365 \h ��40�
10.6.5.	objerror	� PAGEREF _Toc411264366 \h ��40�
10.6.6.	traceoff	� PAGEREF _Toc411264367 \h ��41�
10.6.7.	traceon	� PAGEREF _Toc411264368 \h ��41�
10.7.	Entity Management Functions	� PAGEREF _Toc411264369 \h ��41�
10.7.1.	find	� PAGEREF _Toc411264370 \h ��41�
10.7.2.	findradius	� PAGEREF _Toc411264371 \h ��41�
10.7.3.	lightstyle	� PAGEREF _Toc411264372 \h ��41�
10.7.4.	makestatic	� PAGEREF _Toc411264373 \h ��42�
10.7.5.	nextent	� PAGEREF _Toc411264374 \h ��42�
10.7.6.	remove	� PAGEREF _Toc411264375 \h ��42�
10.7.7.	setmodel	� PAGEREF _Toc411264376 \h ��42�
10.7.8.	spawn	� PAGEREF _Toc411264377 \h ��42�
10.8.	Movement Functions	� PAGEREF _Toc411264378 \h ��42�
10.8.1.	ChangeYaw	� PAGEREF _Toc411264379 \h ��42�
10.8.2.	droptofloor	� PAGEREF _Toc411264380 \h ��42�
10.8.3.	movetogoal	� PAGEREF _Toc411264381 \h ��43�
10.8.4.	setorigin	� PAGEREF _Toc411264382 \h ��43�
10.8.5.	setsize	� PAGEREF _Toc411264383 \h ��43�
10.8.6.	walkmove	� PAGEREF _Toc411264384 \h ��43�
10.9.	Message Functions	� PAGEREF _Toc411264385 \h ��43�
10.9.1.	bprint	� PAGEREF _Toc411264386 \h ��43�
10.9.2.	centerprint	� PAGEREF _Toc411264387 \h ��43�
10.9.3.	sprint	� PAGEREF _Toc411264388 \h ��43�
10.10.	Network Messages	� PAGEREF _Toc411264389 \h ��44�
10.10.1.	WriteAngle	� PAGEREF _Toc411264390 \h ��44�
10.10.2.	WriteByte	� PAGEREF _Toc411264391 \h ��44�
10.10.3.	WriteChar	� PAGEREF _Toc411264392 \h ��44�
10.10.4.	WriteCoord	� PAGEREF _Toc411264393 \h ��44�
10.10.5.	WriteEntity	� PAGEREF _Toc411264394 \h ��44�
10.10.6.	WriteLong	� PAGEREF _Toc411264395 \h ��44�
10.10.7.	WriteShort	� PAGEREF _Toc411264396 \h ��44�
10.10.8.	WriteString	� PAGEREF _Toc411264397 \h ��44�
10.11.	Precaching Functions	� PAGEREF _Toc411264398 \h ��45�
10.11.1.	precache_file	� PAGEREF _Toc411264399 \h ��45�
10.11.2.	precache_model	� PAGEREF _Toc411264400 \h ��45�
10.11.3.	precache_sound	� PAGEREF _Toc411264401 \h ��45�
10.12.	Server-related Functions	� PAGEREF _Toc411264402 \h ��45�
10.12.1.	changelevel	� PAGEREF _Toc411264403 \h ��45�
10.12.2.	setspawnparms	� PAGEREF _Toc411264404 \h ��45�
10.12.3.	stuffcmd	� PAGEREF _Toc411264405 \h ��46�
10.13.	Sound Functions	� PAGEREF _Toc411264406 \h ��46�
10.13.1.	ambientsound	� PAGEREF _Toc411264407 \h ��46�
10.13.2.	sound	� PAGEREF _Toc411264408 \h ��46�
11.	Functions That Are Mandatory in QuakeC	� PAGEREF _Toc411264409 \h ��47�
11.1.	Behavior of Players	� PAGEREF _Toc411264410 \h ��47�
11.1.1.	PlayerPostThink	� PAGEREF _Toc411264411 \h ��47�
11.1.2.	PlayerPreThink	� PAGEREF _Toc411264412 \h ��47�
11.2.	Management of Network Game Clients	� PAGEREF _Toc411264413 \h ��47�
11.2.1.	ClientConnect	� PAGEREF _Toc411264414 \h ��47�
11.2.2.	ClientDisconnect	� PAGEREF _Toc411264415 \h ��47�
11.2.3.	ClientKill	� PAGEREF _Toc411264416 \h ��47�
11.2.4.	PutClientInServer	� PAGEREF _Toc411264417 \h ��47�
11.2.5.	SetChangeParms	� PAGEREF _Toc411264418 \h ��47�
11.2.6.	SetNewParms	� PAGEREF _Toc411264419 \h ��48�
11.3.	Miscellaneous	� PAGEREF _Toc411264420 \h ��48�
11.3.1.	main	� PAGEREF _Toc411264421 \h ��48�
11.3.2.	StartFrame	� PAGEREF _Toc411264422 \h ��48�
12.	Network Protocol	� PAGEREF _Toc411264423 \h ��49�
12.1.	Message Structures	� PAGEREF _Toc411264424 \h ��49�
12.1.1.	Set View Position	� PAGEREF _Toc411264425 \h ��49�
12.1.2.	Set View Angles	� PAGEREF _Toc411264426 \h ��49�
12.1.3.	Temporary Entity	� PAGEREF _Toc411264427 \h ��49�
12.1.4.	Set CD Track	� PAGEREF _Toc411264428 \h ��49�
12.1.5.	Final Message	� PAGEREF _Toc411264429 \h ��50�
12.1.6.	Sell Screen	� PAGEREF _Toc411264430 \h ��50�
12.1.7.	Intermission	� PAGEREF _Toc411264431 \h ��50�
12.1.8.	Killed Monster	� PAGEREF _Toc411264432 \h ��50�
12.1.9.	Found Secret	� PAGEREF _Toc411264433 \h ��50�
13.	Execution	� PAGEREF _Toc411264434 \h ��51�
13.1.	Preset Globals	� PAGEREF _Toc411264435 \h ��51�
13.2.	Runaways	� PAGEREF _Toc411264436 \h ��51�
13.3.	Profiling	� PAGEREF _Toc411264437 \h ��51�
13.4.	Composition of Functions	� PAGEREF _Toc411264438 \h ��52�
13.5.	Program Flow	� PAGEREF _Toc411264439 \h ��52�
13.5.1.	Client Connection/Changelevel	� PAGEREF _Toc411264440 \h ��53�
13.5.2.	Suicide	� PAGEREF _Toc411264441 \h ��54�
13.5.3.	Death	� PAGEREF _Toc411264442 \h ��54�
13.5.4.	Respawn	� PAGEREF _Toc411264443 \h ��55�
14.	Tips & Tricks	� PAGEREF _Toc411264444 \h ��56�
14.1.	QuakeC	� PAGEREF _Toc411264445 \h ��56�
14.2.	Compilation of QuakeC	� PAGEREF _Toc411264446 \h ��56�
14.3.	Frequently Asked Questions about QuakeC	� PAGEREF _Toc411264447 \h ��56�
14.3.1.	How do I combine QuakeC patches?	� PAGEREF _Toc411264448 \h ��56�
14.3.2.	When I compile valid code, the QuakeC compiler crashes, or I get error messages I know are false, what’s wrong?	� PAGEREF _Toc411264449 \h ��57�
14.3.3.	When I start a game with “-dedicated”, I get some messages, then nothing. What’s wrong?	� PAGEREF _Toc411264450 \h ��57�
14.3.4.	How do I change the viewpoint?	� PAGEREF _Toc411264451 \h ��57�
14.3.5.	How do I teleport a player into another server?	� PAGEREF _Toc411264452 \h ��58�
14.3.6.	Can QuakeC bots be listed in the player rankings, or have proper shirt and pants colors?	� PAGEREF _Toc411264453 \h ��58�
14.3.7.	How do I manipulate strings in QuakeC?	� PAGEREF _Toc411264454 \h ��58�
14.3.8.	How do I assemble a piecewise centerprint() from multiple strings?	� PAGEREF _Toc411264455 \h ��59�
14.3.9.	How do I move an entity in QuakeC?	� PAGEREF _Toc411264456 \h ��59�
14.3.10.	How to change the velocity of an entity (make it bounce off walls)?	� PAGEREF _Toc411264457 \h ��59�
14.3.11.	How to calculate the direction a player is facing?	� PAGEREF _Toc411264458 \h ��59�
14.3.12.	How to send a message to a client when he logs in?	� PAGEREF _Toc411264459 \h ��60�
14.4.	Writing QuakeC Code	� PAGEREF _Toc411264460 \h ��60�
Index	� PAGEREF _Toc411264461 \h ��61�
�
1.	�1.	Introduction
1.1.	What is QuakeC?
QuakeC is a language similar to C. QuakeC source can be compiled with the QuakeC compiler to produce PROGS.DAT, a file that Quake can load at startup. In that file Quake search the engines for various things in the Quake World.
Monsters, player, buttons, weapons are the target of QuakeC, you cannot modify maps or graphics - those must be edited with an external editor. Nor can you edit the functions of the core Quake engine; that is proprietary code held by id Software.
To compile QuakeC programs you must have at least qcc.tar.gz�xe "qcc.tar.gz"� from id Software; it contains QCCDOS.EXE�xe "QCCDOS.EXE"� (the DOS QuakeC compiler – source and executable are available for Win 32 and Linux) and all of the .QC files. Note that later versions of the QuakeC base source (such as PROGS106.ZIP�xe "PROGS106.ZIP"�) and third-party compiliers (such as Lee Smith’s ProQCC�xe "ProQCC"�) exist and make QuakeC development considerably easier.
1.1.	Contributions
A major part of this document is taken from the QuakeC compilier source, by id Software. Some material has been updated from Olivier Montanuy’s QuakeC Manual 1.0. Original .TXT format of the QuakeC Manual 1.0 is by Ferrara Francesco.
All the information contained in this document is related to QuakeC, a language developed by and for id Software. Quake, QuakeC, and the id Software QuakeC compiler are copyright © 1996, id Software.
�2.	Lexical Elements
The text of a program consists of the texts of one or more compilations. The text of each compilation is a sequence of separate lexical elements. Each lexical element�xe "lexical element"� is formed from a sequence of characters, and is either a delimiter, an identifier, a reserved_word, a numeric_literal�xe "numeric_literal" \t "See literal:numeric"��xe "literal:numeric"�, a character_literal, a string_literal�xe "string_literal" \t "See literal; string"��xe "literal:string"�, or a comment. The meaning of a program depends only on the particular sequences of lexical elements that form its compilations, excluding comments.
The text of a compilation is divided into lines. A semicolon terminates a line.
In some cases an explicit separator is required to separate adjacent lexical elements. A separator�xe "separator"� is any of a space character, a format effector, or the end of a line, as follows:
A space�xe "separator:space"� character is a separator except within a comment, a string literal, or a character literal.
The end of a line�xe "separator:end of line"� is always a separator.
One or more separators are allowed between any two adjacent lexical elements, before the first of each compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a numeric literal and an adjacent identifier, reserved word, or numeric literal.
2.1.	Delimiters
A delimiter�xe "delimiter"� is either one of the following special characters�xe "special characters"�:
& ‘ () * + , - . / : ; < = > | []
or one of the following compound delimiters�xe "delimiter: compound"� each composed of two adjacent special characters�xe "special characters"�:
== != >= <= && ||
Each of the special characters listed for single character delimiters is a single delimiter except if this character is used as a character of a compound delimiter, or as a character of a comment, string literal, character literal, or numeric literal.
2.2.	Whitespace
Whitespace�xe "whitespace"� characters are spaces, newlines, tabs, and page breaks. Whitespace is used to improve the readability of your programs and to separate tokens from each other, when necessary. (A token is an indivisible lexical unit such as an identifier or number). Whitespace is otherwise insignificant. Whitespace may occur between any two tokens, but not within a token. Whitespace may also occur within a string, when it is significant.
All whitespace characters are delimiters.
2.3.	Identifiers
An identifier�xe "identifier"� is a sequence of one or more non-delimiter characters. Identifiers are used in several ways in Quake C programs.
Certain identifiers are reserved for use as syntactic keywords; they should not be used as variables.
Any identifier that is not a syntactic keyword can be used as an identifier.
A potential identifier is a sequence of non-delimiter characters with a maximum of 64 characters, beginning with “A-Z”, “a-z”, or “_”, and that can continue with those characters in addition to “0-9”. Quake C is case-sensitive�xe "identifier:case-sensitivity of"�.
The names of functions, variables and fields must be unique. For instance, you cannot define a variable with the same name as a field.�xe "identifier:limitations on"�
2.4.	Literals
A literal�xe "literal"� represents a value literally, that is, by means of notation suited to its kind. A literal is either a numeric_literal, or a string_literal.
2.4.1.	Numeric Literals�xe "literal:numeric"�
A real_literal�xe "real_literal" \t "See literal:numeric:real"��xe "literal:numeric:real"� is a numeric_literal that includes a point; an integer_literal�xe "integer_literal" \t "See literal:numeric:integer"��xe "literal:numeric:integer"� is a numeric_literal without a point. All numeric values in QuakeC are floating point values.
5�xe "literal:numeric:integer:example of"�
0.2�xe "literal:numeric:real:example of"�
-25.0
A vector_literal�xe "vector_literal" \t "See literal:numeric:vector"��xe "literal:numeric:vector"� is a set of three real_literals�xe "literal:numeric:real"� enclosed by single quotes (‘�xe "‘;#:as vector brackets"�).
‘0 0 0’�xe "literal:numeric:vector:example of"�
‘10 –12.5 0.0001’
2.4.2.	String Literals
A string_literal�xe "literal:string"� is formed by a sequence of graphic characters (possibly none) enclosed between two quotation marks (“�xe ";#:asstringbrackets "�) used as string brackets.
“This is a string”
“This is a string followed by a newline\n�xe "\\n;#:as newline"�”�xe "literal:string:example of"�
2.4.3.	Built-in Functions
A built-in function immediate is a pound sign (“#�xe "#;#:as built-in function immediate"�”), followed by an integer.
#1
#12�xe "literal:string:example of"�
2.5.	Comments�xe "comment"�
Comments are the same as in C++ (and many C languages). The beginning of a comment is indicated with a double forward slash (//�xe "//;#:as comment"�). Quake C ignores everything on a line starting with the forward double slash until the end of the line.
An alternative form of comment (called an extended comment�xe "comment:extended"�) begins with the characters “/*�xe "/*;#:as extended comment open"�” and ends with the characters “*/�xe "*/;#:as extended comment close"�”. As with ordinary comments, all of the characters of an extended comment, including the leading “*/” and trailing “*/”, are treated as whitespace�xe "whitespace"�. Comments of this form may extend over multiple lines.
// followed by comments, until the next line.
/* enclose an extended comment */�xe "comment:example of"�
1.1.	�2.6.	Model Pragma�xe "pragma"�
Here are a few definitions that are commonly found in the QuakeC code defining the behavior of animated models (monsters, players, etc.). The QuakeC compiler does not interpret most of this information, but it's useful for the program modelgen�xe "modelgen"� that generates the models.
2.6.1.	Animation Flags
$flags�xe "pragma:$flags"� rotation
Rotation characteristic of the object. QuakeC does not interpret this field, but it's useful for the program modelgen�xe "modelgen"� that generates the models. Possible values for $flags: 8 (the object keeps rotating, like armors, etc.). Other values are not known yet.
2.6.2.	Base
$base�xe "pragma:$base"� object
QuakeC does not interpret this field, but it's useful for the program modelgen�xe "modelgen"� that generates the models. The parameter object is the name of a model file that will be used as a kind of starting position for animation.
2.6.3.	Directory
$cd�xe "pragma:$cd"� <dir>
Specify the directory where your model file (.MDL�xe "file types:.MDL"�) is located.
2.6.4.	Frame Definitions
$frame�xe "pragma:$frame"� [<frame> [<frame2> ...]]
This defines several animation frames of the object. For every animation frame defined, you must also define a QuakeC frame function that will be called during this animation frame.
2.6.5.	Model Name
$modelname�xe "pragma:$modelname"� name
The parameter name is the name of the model file defining the object.
2.6.6.	Origin
$origin�xe "pragma:$origin"� vector
This field is not interpreted by QuakeC, but it's useful for the program modelgen�xe "modelgen"� that generates the models. The parameter vector is the location of the object within the bounding box, in the quake editor.
2.6.7.	Scale Factor
$scale�xe "pragma:$scale"� number
This field is not interpreted by QuakeC, but it's useful for the program modelgen�xe "modelgen"� that generates the models. The parameter number comes from the texmake�xe "texmake"� number that is generated. You can use different values if you want.
2.6.8.	Skin File
$skin�xe "pragma:$skin"� skinfile
This field is not interpreted by QuakeC, but it's useful for the program modelgen�xe "modelgen"� that generates the models. The parameter skinfile is the name (without extension) of the .LBM�xe "file types:.LBM"� file that defines the skin of the object, as generated by the program texmake�xe "texmake"�.
�3.	Declarations and Types
3.1.	Types
A set of values, and a set of primitive operations that implement the fundamental aspects of its semantics characterize a type�xe "type"�. An object of a given type is a run-time entity that contains (has) a value of the type.
You cannot define new types�xe "types:defining new"� from the existing ones. In particular, you cannot define new structures or objects. These restrictions make QuakeC compare unfavorably even to BASIC.
You can add only fields to the most important type in QuakeC: entity�xe "entity"�
3.2.	Simple Types
3.2.1.1.	Void Types�xe "type:void"�
void_declaration (void
An empty result, mostly used for definition of procedures (i.e. functions that return no result at all).
3.2.1.2.	Floating Point Types�xe "type:floating point"�
floating_point_declaration (float name�xe "type:floating point:declation of"�
A floating point value. Floats are also used to store Boolean�xe "type:Boolean" \t "See type:floating point"� (TRUE, FALSE) values; integer values, like counters; or bit flags.
A parsing ambiguity�xe "bugs:parsing ambiguity"� is present with negative constants: "a-5" (five subtracted from a) will be parsed as "a", then "-5", causing an error. Separate the “-“ from the digits with a space ("a - 5") to get the proper behavior.
3.2.1.3.	Vector Types�xe "type:vector"�
vector_declaration (vector name�xe "type:vector:declaration of"�
A vector is made up of three float coordinates. Used to represent positions or directions in 3D space. Note that single quotes (‘) surround a vector. Do not use double quotes, they are reserved for strings.
If you declare a vector foobar, then you can access it's x, y and z fields�xe "type:vector:fields"� with the float types: foobar_x, foobar_y, and foobar_z.
3.2.1.4.	String Types�xe "type:string"�
string_declaration (string name�xe "type:string:declaration of"�
Represents a character string. Used to indicate file names, or messages to be broadcast to players. Use ”\n�xe "\\n;#:as newline"� “ for a newline�xe "newline" \t "See "�. The \"�xe "\";#:as escaped quotation mark"� escape can be used to include a quotation mark (“) in the string.
3.2.1.5.	Entity Types�xe "type:entity"�
entity_declaration (entity name�xe "entity:declaration of"�
An entity�xe "entity"� represents objects in the game, like things, players, and monsters. For instance, this is the type of the entities self and other. The entity type is a structured type, made of fields.
3.2.2.	Field Types�xe "type:entity:field"�
Contrary to the other types, the entity�xe "entity"� type is a reference to an instance of a structured object that contains information of many different kinds, stored as fields of the entity object. Each field is given a name and a type.
Some of the fields do not store values; instead, they store the function to be executed under certain conditions, called methods.
If QuakeC was an object oriented programming language, method functions would be distinguished from the other fields and you would be able to create new object types, with their own fields.
As QuakeC stands currently, all the field definitions are definitions of entity�xe "entity"� fields. So, anywhere in your code you could add definition of new fields, and the compiler would interpret them as an extension of the entity definition.
Here are all the possible definitions of entity�xe "entity"� fields, with their types:
.float name
.string name
.vector name
.entity�xe "entity:field:example of"� name
3.2.3.	Reserved Field Types�xe "type:entity:field:reserved"�
In the first file read by the QuakeC compiler, DEFS.QC�xe "DEFS.QC"�, there must be a definition for the entity�xe "entity"� fields and world fields. This definition is hard coded, and cannot be changed without requiring a recompilation of the core Quake engine.
In DEFS.QC�xe "DEFS.QC"�, globals�xe "global" \t "See variable:global"��xe "variable:global"� are defined before the special definition “void end_sys_globals;“, while the entity�xe "entity"� fields are defined before the special definition “void end_sys_fields;”. It's not important to understand the tags, just don't modify DEFS.QC before those two tags, and you won't be in trouble. Better yet, avoid modifying DEFS.QC altogether and use header files to define entity fields, globals, constants, and prototypes.
3.3.	Definition of Variables�xe "variable"�
variable_declaration ([local] simple_type name [= immediate][, name][= <immediate>] …�xe "variable:declaration of"�
There are two levels of scoping�xe "scoping"�. By default all variables are global�xe "variable:global"�: they can be accessed by any functions, and they are shared by all the functions (and all the clients of a given network server, of course). Note that variables cannot be givien an initial default value as part of their declaration.
Using the keyword local�xe "local"� just before the declaration of a variable, makes the variable(s) visible only to the function itself (i.e. it will be allocated on the stack).
Note that parameters�xe "function:parameter"� of functions are treated like local variables, they are only visible to the function, but they can be modified.
3.4.	Definition of Constants (Immediates�xe "immediate" \t "See constant"�)�xe "constant"�
constant_declaration (simple_type name = value�xe "constant:declaration of"�
Any global variable�xe "variable:global"� that is initialized by setting a value to it is actually assumed to be a constant. Since a constant is in fact represented by immediate values, you should NEVER attempt to modify a constant by giving it another value. Also, do not use another constant as the value for a constant. literals should only be used as the values for constants.
1.	�4.	Names and Expressions
4.1.	Names
Names�xe "name"� can denote declared entities, whether declared explicitly or implicitly (see � REF _Ref409963044 \r \h ��3.1�). Names can also denote objects or subprograms designated by access values; the results of function_calls�xe "function_calls" \t "See function:call"�; protected subprograms, single entries, entry families, and entries in families of entries. Finally, names can denote attributes of any of the foregoing.
4.2.	Expressions
An expression�xe "expression"� is a formula that defines the computation or retrieval of a value.
4.3.	Operators and Expression Evaluation
The language defines the following five categories of operators�xe "operator"� (given in order of increasing precedence�xe "operator:precedence"�):
4.3.1.	Logical Operators
&&	// logical AND
||	// logical OR
!	// logical NOT�xe "operator:logical"�
Take care that in if () conditional expressions containing two or more logical clauses, all the clauses will be evaluated�xe "operator:evaluation"� before the condition test (like in BASIC, and unlike C). That means that if one part of your condition is not always valid or defined, you had better decompose your if() into two successive if() statements, which should also make it faster.
4.3.2.	Relational Operators
<=	// less than or equal to
<	// less than
>=	// greater than or equal to
>	// greater than
==	// equal, like in C.
!=	// not equal, like in C.�xe "operator:relational"�
4.3.3.	Binary Adding Operators
+	// addition
-	// subtraction
&	// bitwise AND
|	// bitwise OR�xe "operator:binary"�
4.3.4.	Unary Adding Operators
+	// identity
-	// negation�xe "operator:unary"�
4.3.5.	Multiplying Operators
*	// multiplication
/	// division�xe "operator:mulplication"��5.	Statements
A statement�xe "statement"� is either simple or compound. A simple_statement�xe "simple_statement" \t "See statement:simple"��xe "statement:simple"� encloses no other statement. A compound_statement�xe "compound_statement" \t "See statement:compound"��xe "statement:compound"� can enclose simple_statements and other compound_statements.
5.1.	Assignment Statements
assignment_statement (variable_name = expression;�xe "statement:assignment:defined"�
An assignment_statement�xe "assignment_statement" \t "See statement:assignment"��xe "statement:assignment"� replaces the current value of a variable with the result of evaluating an expression.
5.2.	If Statements
if_statement (if (condition) simple_statement [else simple_statement]
if_statement (if (condition) { compound_statement [else compound_statement] }�xe "statement:if:declaration of"�
condition (boolean_expression�xe "condition:defined"�
An if_statement�xe "statement:if"��xe "if_statement" \t "See statement:if"� selects for execution at most one of the enclosed simple_statement or compound_statements, depending on the (truth) value of one or more corresponding conditions.
Note that a conditional statement returning a nonzero value always evaluates as TRUE, while a value of zero evaluates as FALSE.
5.3.	Loop Statements
while (condition) sequence_of_statements
do sequence_of_statments while (condition)�xe "statement:while:declaration of"�
A loop_statement�xe "loop_statement" \t "See statement:loop"��xe "statement:loop"� includes a sequence_of_statements that is to be executed repeatedly zero or more times.
�6.	Subprograms
A subprogram_declaration�xe "subprogram_declaration" \t "See subprogram:declaration of"� declares a procedure or function.
6.1.	Subprogram Declaration
function_declaration (type (formal_parameter[, formal_parameter …]) name�xe "subprogram:declaration of"�
A subprogram�xe "subprogram:declaration requirement"� must be declared before it is used.
Procedures�xe "procedure"� are declared by specifying a type of void.
6.2.	Subprogram Specification�xe "subprogram:specification" \t "See function, procedure"�
procedure_specification (type (formal_parameter[, formal_parameter …]) name = { sequence_of_statements return(expression) }�xe "procedure:specification"�
function_specification (type (formal_parameter[, formal_parameter …]) name = { sequence_of_statements return(expression) }�xe "function:specification"�
There is a maximum of eight (8) formal parameters�xe "subprogram:limitations on formal parameters "�.
frame_function_specification (void() framename = [$framenum, nextthink] { sequence_of_statements }�xe "function:frame:specification"�
Frame functions�xe "function:frame"� (also called states�xe "states" \t "See function:frame"�) are special functions made for convenience. They are meant to facilitate the definition of animation frames, by making them more readable.
It is strictly equivalent to:
void() framename = {
self.frame= $framenum;		// the model frame to displayed
self.nextthink = time + 0.1;	// next frame happens in 1/10 of second
self.think = nextthink;		// the function to call at the next frame
sequence_of_statements }�xe "function:frame:equivalence"�
6.3.	Subprogram Calls
subprogram_call (name (actual_parameter[, actual_parameter …])�xe "subprogram:calling"�
There is a maximum of eight (8) parameters�xe "subprogram:limitations on calling parameters"�.
�7.	Predefined Constants�xe "constant:predefined"�
7.1.	Entities
7.1.1.	Temporary Entities�xe "entity:temporary"�
// point entity is a small point-like entity.
 0 TE_SPIKE				// unknown
 1 TE_SUPERSPIKE			// superspike hits (spike traps)
 2 TE_GUNSHOT			// hit on the wall (Axe, Shotgun)
 3 TE_EXPLOSION			// grenade/missile explosion
 4 TE_TAREXPLOSION			// explosion of a tarbaby
 7 TE_WIZSPIKE			// wizard's hit
 8 TE_KNIGHTSPIKE			// hell knight's shot hit
10 TE_LAVASPLASH			// Chthon awakes and falls dead
11 TE_TELEPORT			// teleport end
// large entity is a 2 dimensional entity.
 5 TE_LIGHTNING1			// flash of the Shambler
 6 TE_LIGHTNING2			// flash of the Thunderbolt
 9 TE_LIGHTNING3			// flash in e1m7 to kill Chthon
7.2.	Items�xe "items"�
Values used for the entity field .items�xe "entity:field:.items"�.
IT_SHOTGUN = 1;
IT_SUPER_SHOTGUN = 2;
IT_NAILGUN = 4;
IT_SUPER_NAILGUN = 8;
IT_GRENADE_LAUNCHER = 16;
IT_ROCKET_LAUNCHER = 32;
IT_LIGHTNING = 64;
IT_EXTRA_WEAPON = 128;
IT_SHELLS = 256;
IT_NAILS = 512;
IT_ROCKETS = 1024;
IT_CELLS = 2048;
IT_AXE = 4096;
IT_ARMOR1 = 8192;
IT_ARMOR2 = 16384;
IT_ARMOR3 = 32768;
IT_SUPERHEALTH = 65536;
IT_KEY1 = 131072;
IT_KEY2 = 262144;
IT_INVISIBILITY = 524288;
IT_INVULNERABILITY = 1048576;
IT_SUIT = 2097152;
IT_QUAD = 4194304;
7.2.1.	Behavior of Solid Objects�xe "solid objects"�
Values used with the entity field .solid�xe "entity:field:.solid"�.
SOLID_NOT = 0;			// no interaction with other objects:
// inactive triggers
SOLID_TRIGGER = 1;			// touch on edge, but not blocking active
// triggers: pickable items (.MDL models,
// like armors)
SOLID_BBOX = 2;			// touch on edge, block: pickable items
// (.BSP models, like ammo box, grenades,
// missiles
SOLID_SLIDEBOX = 3;		// touch on edge, but not an onground: most
// monsters
SOLID_BSP = 4;			// BSP clip, touch on edge, block: buttons,
	// platforms, doors, missiles
7.2.2.	Movement Types�xe "movement"�
Values used for entity field .movetype�xe "entity:field:.movetype"�.
MOVETYPE_NONE = 0;			// never moves
//float MOVETYPE_ANGLENOCLIP = 1;
//float MOVETYPE_ANGLECLIP = 2;
MOVETYPE_WALK = 3;			// walking players only
MOVETYPE_STEP = 4;			// walking monster
MOVETYPE_FLY = 5;			// hovering flight: meant for flying
// monsters (and players)
MOVETYPE_TOSS = 6;			// ballistic flight: meant for gibs and the
// like
MOVETYPE_PUSH = 7;			// not blocked by the world, push and
// crush meant for doors, spikes and
// crushing platforms
MOVETYPE_NOCLIP = 8;		// not blocked by the world
MOVETYPE_FLYMISSILE = 9;		// like fly, but size enlarged against
// monsters: meant for rockets
MOVETYPE_BOUNCE = 10;		// bounce off walls
MOVETYPE_BOUNCEMISSILE = 11	// bounce off walls, but size enlarged
// against monsters: meant for grenades
7.2.3.	Entity Damage�xe "damage"� Types
Values used for entity field .takedamage�xe "entity:field:.damage"�. Most damageable entities have DAMAGE_AIM, so that when they chew on a grenade, it explodes. If you make an entity DAMAGE_YES, the grenades will bounce off it.
DAMAGE_NO = 0;			// Can't be damaged
DAMAGE_YES = 1;			// Grenades don't explode when touching
// entity
DAMAGE_AIM = 2;			// Grenades explode when touching entity�xe "entity"�
7.2.4.	Entity Dead Flag�xe "death"�
Values used for the entity field .deadflag�xe "entity:field:.deadflag"�.
DEAD_NO = 0;				// still living
DEAD_DYING = 1;			// dying (helpless)
DEAD_DEAD = 2;			// really dead
DEAD_RESPAWNABLE = 3;		// dead, but can respawn
7.2.5.	Spawnflags�xe "spawnflags"�
The entity field .spawnflags�xe "entity:field:.spawnflags"� is a bit field, whose interpretation depend on the concerned entity. There is quite a bit of a hack here that could cause unexpected problems with QuakeC code that does not pay particular attention to the context in which the value of this field is evaluated.
DOOR_START_OPEN = 1;		// allow entity to be lighted in closed
// position
SPAWN_CRUCIFIED= 1;		// for zombie
PLAT_LOW_TRIGGER = 1;		// for func_plat()
SPAWNFLAG_NOTOUCH= 1;
SPAWNFLAG_NOMESSAGE= 1;
PLAYER_ONLY = 1;
SPAWNFLAG_SUPERSPIKE = 1;	// for spike shooter
SECRET_OPEN_ONCE = 1;		// secret door, stays open
PUSH_ONCE = 1;
WEAPON_SHOTGUN = 1;		// weapon, shotgun
H_ROTTEN = 1;			// health, rotten (5-10 points)
WEAPON_BIG2 = 1;			// items
START_OFF = 1;			// light, is off at start.
SILENT = 2;
SPAWNFLAG_LASER = 2;		// for spike shooter
SECRET_1ST_LEFT = 2;		// secret door, 1st move is left of arrow
WEAPON_ROCKET = 2;			// weapon, rocket
H_MEGA = 2;				// health, mega (100 points)
DOOR_DONT_LINK = 4;
SECRET_1ST_DOWN = 4;		// secret door, 1st move is down from arrow
WEAPON_SPIKES = 4;			// weapon, nailgun
DOOR_GOLD_KEY = 8;
SECRET_NO_SHOOT = 8;		// secret door, only opened by trigger
WEAPON_BIG = 8;			// weapon, super model
DOOR_SILVER_KEY = 16;
SECRET_YES_SHOOT = 16;		// secret door, shootable even if targeted
DOOR_TOGGLE = 32;
7.3.	Light Effects�xe "lighting"�
Values used by the entity field .effects�xe "entity:field:.effects"�.
EF_BRIGHTFIELD = 1;		// glowing field of dots
EF_MUZZLEFLASH = 2;
EF_BRIGHTLIGHT = 4;
EF_DIMLIGHT = 8;
7.4.	Point Contents
CONTENT_EMPTY = -1;		// empty area
CONTENT_SOLID = -2;		// totally solid area (rock)
CONTENT_WATER = -3;		// pool of water
CONTENT_SLIME = -4;		// pool of slime
CONTENT_LAVA = -5;			// lava
CONTENT_SKY = -6;			// sky
7.5.	Protocol Messages�xe "messages"�
7.5.1.	Message Routing�xe "messages:routing"�
Values used by the Write*() functions.
MSG_BROADCAST = 0;			// unreliable message, sent to all
MSG_ONE = 1;				// reliable message, sent to msg_entity()
MSG_ALL = 2;				// reliable message, sent to all
MSG_INIT = 3;			// write to the init string
Use unreliable�xe "messages:unreliable"� (but fast) messages, when it's of no importance if a client misses the message (examples: sound, explosions, monster deaths, taunts, etc.). Use reliable�xe "messages:reliable"� messages when it's very important that every client sees the message, lest a game inconsistency occur (examples: shots, player deaths, door moves, game ends, and CD track changes).
7.5.2.	Message Types�xe "messages:types"�
These are some of message types defined in the Quake network protocol. Values are used by the WriteByte() function.
SVC_SETVIEWPORT = 5;
SVC_SETANGLES = 10;
SVC_TEMPENTITY = 23;
SVC_KILLEDMONSTER = 27;
SVC_FOUNDSECRET = 28;
SVC_INTERMISSION = 30;
SVC_FINALE = 31;
SVC_CDTRACK = 32;
SVC_SELLSCREEN = 33;
SVC_UPDATE = 128;
7.6.	Sound�xe "sound"�
7.6.1.	Attenuation�xe "sound:attenuation"�
Those values are meant to be used with the functions sound() and ambientsound() as values for the parameter attenuation.
ATTN_NONE = 0;			// full volume everywhere in the level
ATTN_NORM = 1;			// normal
ATTN_IDLE = 2;			// [FIXME]
ATTN_STATIC = 3;			// [FIXME]
7.6.2.	Channel�xe "sound:channel"�
These values are meant to be used with the function sound()as values for the parameter channel.
CHAN_AUTO = 0;			// create a new sound
CHAN_WEAPON = 1;			// replace entity’s weapon noise
CHAN_VOICE = 2;			// replace entity’s voice
CHAN_ITEM = 3;			// replace entity’s item noise
CHAN_BODY = 4;			// replace entity’s body noise�8.	Predefined Global Variables�xe "variable:global:predefined"�
These variables are accessible in every function. QuakeC functions are not intended to modify them directly.
8.1.	coop�xe "variable:global:predefined:coop"�
float coop;				// a Boolean value, 0 or 1
TRUE if playing cooperative.
8.2.	deathmatch�xe "variable:global:predefined:deathmatch"�
float deathmatch;			// a Boolean value, 0 or 1
TRUE if playing deathmatch.
8.3.	force_retouch�xe "variable:global:predefined:force_retouch"�
float force_retouch;		// counter
Force all entities to touch triggers next frame. This is needed because non-moving things don't normally scan for triggers, and when a trigger is created (like a teleport trigger), it needs to catch everything. It is decremented each frame, so it is usually set to 2 to guarantee everything is touched.
8.4.	found_secrets�xe "variable:global:predefined:found_secrets"�
float found_secrets;		// counter
Number of secrets found.
8.5.	frametime�xe "variable:global:predefined:frametime"�
float frametime;			// in seconds
No idea what this can be. Used only when jumping in water.
8.6.	killed_monsters�xe "variable:global:predefined:killed_monsters"�
float killed_monsters;		// counter
Store the total number of monsters killed.
8.7.	mapname�xe "variable:global:predefined:mapname"�
string mapname;
Name of the level map currently being played, like "start".
8.8.	msg_entity�xe "variable:global:predefined:msg_entity"�
entity msg_entity;
If you want to send a message to just one entity�xe "entity"� e, then set msg_entity = e and send the message with flag MSG_ONE, instead of MSG_ALL.
8.9.	other�xe "variable:global:predefined:other"�
entity other;
The object concerned by an impact; not used for thinks.
8.10.	parm1…parm16�xe "variable:global:predefined:parm1…parm16"�
8.11.	self�xe "variable:global:predefined:self"�
entity self;
The entity that is subject to the current function.
8.12.	serverflags�xe "variable:global:predefined:serverflags"�
float serverflags;			// bit fields
Propagated from level to level, and used to keep track of the completed episodes. If serverflag & (1 << e) is TRUE, then episode e was already completed. Generally equal to player.spawnflags & 15.
8.13.	teamplay�xe "variable:global:predefined:teamplay"�
float teamplay;			// a Boolean value, 0 or 1
TRUE if playing by teams.
8.14.	time�xe "variable:global:predefined:time"�
float time;				// in seconds
The current game time�xe "time"� in seconds. Note that because the entities�xe "entity:sequencing"� in the world are simulated sequentially, time is NOT strictly increasing. An impact late in one entity's time slice may set time higher than the think function of the next entity. The difference is limited to 0.1 seconds.
8.15.	total_monsters�xe "variable:global:predefined:total_monsters"�
float total_monsters;		// counter
Total number of monsters that were spawned, since the beginning of the level.
8.16.	total_secrets�xe "variable:global:predefined:total_secrets"�
float total_secrets;		// counter
Number of secrets found by the players. Affected only by trigger_secret.
8.17.	world�xe "variable:global:predefined:world"�
entity world;
The server's world object, which holds all global state for the server, like the deathmatch flags and the body queues.

float parm1;				// items bit flag (IT_SHOTGUN | IT_AXE)
float parm2;				// health
float parm3;				// armorvalue
float parm4;				// ammo
float parm5;				// ammo
float parm6;				// ammo
float parm7;				// ammo
float parm8;				// weapon
float parm9;				// armortype * 100
float parm10, parm11, parm12, parm13, parm14, parm15, parm16;
These parameters seem to be a bit of hack. They are used when a client connects. Spawnparms�xe "spawnparms"� are used to encode information about clients across server level changes.
�9.	Entities�xe "entity"�
In Quake, monsters, players, items, and the level itself are all entities.
9.1.	Types of Entities
There are three kinds of entities, and you will encounter all of them in the QuakeC code.
9.1.1.	Static entities
A static entity�xe "entity:static"� doesn't interact with the rest of the game. These are flames (progs/flame.mdl), lights, illusionary objects, and the like. It is never be necessary to reference such an entity, so they don't get an entity reference number.
A static entity�xe "entity:static"� will be created by the function:
makestatic()�xe "entity:static:creating"�
which causes a spawnstatic message to be sent to every client. A static entity�xe "entity:static"� cannot be removed once created. The maximum number of static entities is 127.
9.1.2.	Temporary entities
A temporary entity�xe "entity:temporary"� is a short life time entity. For instance, Quake uses these entities for hits on the wall (point-like entities) or for the Thunderbolt flash (line-like entities), gun shots, and anything that is not supposed to last more than one frame.
Sending a valid temporary entity�xe "entity:temporary"� message will create a temporary entity. A temporary entity need not be removed it disappears by itself.
9.1.3.	Dynamic entities
A dynamic entity�xe "entity:dynamic"� is anything that changes its behavior or its appearance. These are ammunition boxes, spinning armors, player models and the like.
A dynamic entity�xe "entity:dynamic"� will be created by the sequence:
entity = spawn();
setmodel(entity, "progs/entity.mdl");
setsize(entity, vector_min, vector_max);
setorigin(entity, position);�xe "entity:dynamic:creating"�
It will have to be removed by the function:
remove(entity);�xe "entity:dynamic:removing"�
The maximum number of dynamic entities�xe "entity:dynamic:maximum number of"� is 449.
9.2.	Predefined Entity Fields�xe "entity:field:predefined"�
These are the fields that are available in the entity objects (like self, other). Beware that this is not true object oriented programming: there is no protection when accessing those fields, and no guarantee on the validity of values. So if you put garbage there you will probably crash the game.
9.2.1.	Fields Shared between QUAKE.EXE and QuakeC
These fields describe the most common entity fields. They are shared between the C code of QUAKE.EXE, and the QuakeC code of PROGS.DAT.
Some of the fields are managed by the C code: you can read their value, but YOU SHOULD NEVER MODIFY THEIR VALUE DIRECTLY (there are special built-in functions for that).
9.2.1.1.	Technical
entity chain;			// next entity, in a chain list of entities
John Cash advises programmers to not use the chain field. The chain field gets written by some of the built-in functions (like findradius()). If you need to make a linked list, make your own link field.
float ltime;				// local time for entity
float teleport_time;		// to avoid backing up
float spawnflags;
9.2.1.2.	Entity Appearance
float modelindex;		// index of model, in the precached list
string classname;			// spawn function
string model;			// the name of the file that contains the
// entity model

float frame;
This is the index of the currently displayed model frame. Frames must be defined by a $frame�xe "pragma:$frame"� construct in the model file, and manipulated in the code as $xxx (where xxx is the name of the frame).

float skin;
This is the index of the model skin currently displayed. If your model has more than one skin defined, then this value indicates the skin in use. You can change it freely, as long as it remains in a valid range. For instance, it's used by the armor model to show the yellow, red or green skin.

float effects;
This is a flag that defines the special light effects that the entity is subject to. This can supposedly be used to make an entity glow, or to create a glowing field of dots around it.
9.2.1.3.	Position in 3D
Quirks: setting the angles on a player entity doesn't work.
vector origin;			// position of model
// origin_x, origin_y, origin_z
vector mins;				// bounding box extents reletive to origin
// mins_x, mins_y, mins_z
vector maxs;				// bounding box extents reletive to origin
// maxs_x, maxs_y, maxs_z
vector size;				// the x, y and z lengths of the entity's
// bounding box; obtained by subtracting
// absmin from absmax
// size_x,size_y,size_z
vector absmin;			// lower left-hand corner of the
// entity's bounding box relative to the
// entity's origin
// absmin_x absmin_y absmin_z
vector absmax;			// origin + mins and maxs
// absmax_x absmax_y absmax_z
vector oldorigin;			// old position
vector angles;			// = 'pitch_angle yaw_angle flip_angle'
9.2.1.4.	Situation of the Entity
Since groundentity is used nowhere in PROGS.DAT, it's meaning is just a wild guess from a similar field in messages.
float waterlevel;			// 0 = not in water, 1 = feet, 2 = waist,
// 3 = eyes
float watertype;			// a content value
entity groundentity;		// indicates that the entity moves on the
// ground
9.2.1.5.	Movement in 3D
vector velocity;			// = 'speed_x speed_y speed_z'
vector avelocity;			// = 'pitch_speed yaw_speed 0', angle
// velocity
vector punchangle;		// temp angle adjust from damage or recoil
float movetype;			// type of movement
float yaw_speed;			// rotation speed
float solid;			// specifies if entity can block movement
9.2.1.6.	Monster Behavior
entity goalentity;			// monster's movetarget or enemy
float ideal_yaw;			// monster's ideal direction, on paths
float yaw_speed;			// monster's yaw speed
string target;			// target of a monster
string targetname;			// name of the target
9.2.1.7.	Automatic Behavior
When you want an entity to do something specific after a certain delay (exploding, disappearing, or the like…), you set .nextthink�xe "entity:field:.nextthink"� to that delay (in seconds), and set .think to the function to execute.
float nextthink;			// next time when entity must act
void() think;			// function invoked when entity must act
void() touch;			// function invoked if entity is touched
void() use;				// function invoked if entity is used
void() blocked;		// function for doors or plats, called when
// can't push other
vector movedir;			// mostly for doors, but also used for
// waterjump
string message;			// trigger messages
float sounds;			// either a CD track number or sound number
string noise;			// sound played on entity noise channel 1
string noise1;
string noise2;
string noise3;
9.2.1.8.	Player/Monster Statistics and Damage
float deadflag;			// tells if an entity is dead
float health;			// health level
float max_health;			// players maximum health is stored here
float takedamage;			// indicates if entity can be damaged

float dmg_take;
float dmg_save;
Damage is accumulated through a frame and sent as one single message, so the super shotgun doesn't generate huge messages.

entity dmg_inflictor;		// entity that inflicted the damage
// (player, monster, missile, door)
9.2.1.9.	Player Inventory
float items;				// bit flags
float armortype;			// fraction of damage absorbed by armor
float armorvalue;			// armor level
float weapon;			// one of the IT_SHOTGUN, etc flags
string weaponmodel;		// entity model for weapon
float weaponframe;			// frame for weapon model
float currentammo;			// ammo for current weapon
float ammo_shells;			// remaining shells
float ammo_nails;			// remaining nails
float ammo_rockets;		// remaining rockets and grenades
float ammo_cells;			// remaining lightning bolts

float impulse;			// weapon changes
When set to 0, the player's weapon doesn't change. When different from zero, this field is interpreted by the QuakeC impulse command as a request to change weapon (see ImpulseCommand()).
9.2.1.10.	Player Combat
entity owner;		// entity that owns this one
// (missiles, bubbles are owned by the
// player)
entity enemy;			// personal enemy (only for monster
// entities)
float button0;			// fire
float button1;			// use
float button2;			// jump
vector view_ofs;			// position of player eye, relative to
// origin
float fixangle;			// set to 1 if you want angles to change
// now
vector v_angle;			// view or targeting angle for players
float idealpitch;			// calculated pitch angle for lookup up
// slopes
entity aiment;			// aimed entity?
9.2.1.11.	Deathmatch
float frags;				// number of frags
string netname;			// name, in network play
float colormap;			// colors of shirt and pants
float team;				// team number
float flags;
9.2.2.	Fields used only by QuakeC
These entity fields�xe "entity:field"� are used only by QuakeC programs, and are never referenced by the C code of QUAKE.EXE. So you can do whatever you want with the values, so long as it's compatible with what other QuakeC modules do.
If the fields defined here are not suitable for you, you can define new fields, by adding them at the end of the definition of fields. As a matter of fact, the number of fields in an entity (hence the size of all the instances of entity objects) is determined by QuakeC: in the PROGS.DAT header, a value named entityfields indicates to QUAKE.EXE the size of the entity object. Beware however that the more fields you add, the more each entity will suck memory. Add just one float (4 bytes) and it will take, in memory, 4 bytes times the number of entities�xe "entity:memory consumption"�.
The best way is to share fields�xe "entity:field:sharing"� between distinct classes of entities, by reusing the same position for another kind of field. If the QuakeC Compiler was a real object-oriented compiler, that would be done very safely by single-inheritance (multiple-inheritance would be a deadly mistake). You will also notice that id Software has made quite a lousy usage of most of the fields, defining much more than were actually needed, since they are only used by a few entities.
9.2.2.1.	World Fields
string wad;				// name of WAD file with misc graphics
string map;				// name of the map being played
float worldtype;			// see below
9.2.2.2.	QuakeEd
string killtarget;
float light_lev;			// not used by game, but parsed by light
// utility
float style;
9.2.2.3.	Monster Behavior
These functions are called when these specific events happen:

void() th_stand;			// when stands idle
void() th_walk;			// when is walking
void() th_run;			// when is running
void() th_missile;			// when a missile comes
void() th_melee;			// when fighting in melee
void() th_die;			// when dies

void(entity attacker, float damage) th_pain;
Executed when the monster takes a certain amount of damage from an attacker (a player, or another monster). Usually causes the monster to turn against the attacker.
9.2.2.4.	Monsters
entity oldenemy;			// mad at this player before taking damage
float speed;
float lefty;
float search_time;
float attack_state;
float pausetime;
entity movetarget;
9.2.2.5.	Player
float walkframe;
float attack_finished;
float pain_finished;		// time when pain sound is finished
float invincible_finished;
float invisible_finished;
float super_damage_finished;
float radsuit_finished;
float invincible_time;		// time when player ceases to be invincible
float invincible_sound;
float invisible_time;		// time when player ceases to be invisible
float invisible_sound;
float super_time;			// time when quad shot expires?
float super_sound;
float rad_time;
float fly_sound;
float axhitme;			// TRUE if hit by axe
float show_hostile;		// set to time + 0.2 whenever a client
// fires a weapon or takes damage
float jump_flag;			// player jump flag
float swim_flag;			// player swimming sound flag
float air_finished;		// when time > air_finished, start drowning
float bubble_count;		// keeps track of the number of bubbles
string deathtype;			// keeps track of how the player died
9.2.2.6.	Objects
string mdl;				// model name?
vector mangle;			// angle at start. 'pitch roll yaw'
vector oldorigin;			// only used by secret door
float t_length;
float t_width;
9.2.2.7.	Doors
vector dest;
vector dest1;
vector dest2;
float wait;				// time from firing to restarting
float delay;				// time from activation to firing
entity trigger_field;		// door's trigger entity
string noise4;
float aflag;
float dmg;				// damage done by door when hit
9.2.2.8.	Miscellaneous
float cnt;				// counter
void() think1;
vector finaldest;
vector finalangle;
// triggers
float count;				// for counting triggers
// plats/doors/buttons
float lip;
float state;
vector pos1;
vector pos2;				// top and bottom positions
float height;
// sounds
float waitmin;
float waitmax;
float distance;
float volume;
�10.	Built-in Functions�xe "function:built-in"�
These are the built-in functions of QuakeC. Since they are hard-coded in C, they cannot be redefined, but they are very fast.
10.1.	Basic Math Functions
10.1.1.	anglemod�xe "function:built-in:anglemod"�
float anglemod(float angle)
Returns angle in degree, modulo 360.
10.1.2.	ceil�xe "function:built-in:ceil"�
float ceil(float val)
Returns val, rounded up to the integer above (like the equivalent function in C).
10.1.3.	fabs�xe "function:built-in:fabs"�
float fabs(float val)
Returns absolute value of val (like the equivalent function in C).
10.1.4.	floor�xe "function:built-in:floor"�
float floor(float val)
Returns val, rounded up to the integer below (like the equivalent function in C).
10.1.5.	ftos�xe "function:built-in:ftos"�
string ftos(float value)
Float to string: converts value to string. Note: may return a string with leading spaces when the converted value is non-integer and also cuts it off after the first decimal (e.g. " 0.9" for 0.93). This is confirmed behavior for DOSQuake 1.08 and WinQuake 1.0.

10.1.6.	random�xe "function:built-in:random"�
float random()
Returns a random floating point number between 0.0 and 1.0.
10.1.7.	rint�xe "function:built-in:rint"�
float rint(float val)
Returns val, rounded up to the closest integer value.
10.2.	Basic Vector Math Functions
10.2.1.	makevectors�xe "function:built-in:makevectors"�
void makevectors(vector angles)
Constructs an angle = 'pitch yaw 0'. Calculates the unit vectors (a length of 1 "unit") pointing forward, to the right, and up (positive x, y and z directions, respectively) from the given angle. Result is returned in the global variables:
vector v_forward;			// points forward
vector v_up;			// points up
vector v_right;			// points toward the right
10.2.2.	normalize�xe "function:built-in:normalize"�
vector normalize(vector v)
Returns a vector of length 1. Gives the vector collinear to v, but of length 1. This can be useful for calculation of distance along an axis.
10.2.3.	vlen�xe "function:built-in:vlen"�
float vlen(vector v)
Returns the length of vector v (never < 0).
10.2.4.	vectoangles�xe "function:built-in:vectoangles"�
vector vectoangles(vector v)
Returns vector = 'pitch yaw 0 '. Vector to angles: calculates the pitch angle (aiming) and yaw angle (bearing) corresponding to a given 3D direction v.
10.2.5.	vectoyaw�xe "function:built-in:vectoyaw"�
float vectoyaw(vector v)
Returns an angle in degrees. Vector to yaw: calculates the yaw angle (bearing) corresponding to a given 3D direction v.
10.2.6.	vtos�xe "function:built-in:vtos"�
string vtos(vector v)
Vector to string: convert a vector into a string.
10.3.	Collision Checking Functions
10.3.1.	checkbottom�xe "function:built-in:checkbottom"�
float checkbottom(entity e)
Returns TRUE or FALSE. Returns TRUE if on the ground. Used only for jumping monsters that need to jump randomly not to get hung up (or whatever it actually means).
10.3.2.	checkpos�xe "function:built-in:checkpos"�
scalar checkpos (entity e, vector position)
CURRENTLY DISABLED. DO NOT USE. Returns TRUE if the given entity�xe "entity"� can move to the given position from its current position by walking or rolling.
10.3.3.	pointcontents�xe "function:built-in:pointcontents"�
float pointcontents(vector pos)
Returns the contents of the area situated at position pos. Used to know if an area is in water, in slime or in lava. Makes use of the BSP tree, and is supposed to be very fast.
10.3.4.	traceline�xe "function:built-in:traceline"�
traceline(vector v1, vector v2, float nomonsters, entity forent)
Where: v1= start of line; v2= end of line; nomonster= if TRUE, then see through other monsters, else FALSE; forent= ignore this entity, it's owner, and it's owned entities; if forent = world, then ignore no entity.
Trace a line of sight, possibly ignoring monsters, and possibly ignoring the entity forent (usually, forent = self). This function is used very often, tracing and shot targeting. Bounding boxes and exact BSP entities blocks traces. Returns the results in the global variables:
float trace_allsolid;		// never used
float trace_startsolid;		// never used
float trace_fraction;		// fraction (percent) of the line that was
// traced, before an obstacle was hit;
// equal to 1 if no obstacle were found
vector trace_endpos; 		// point where line ended or met an
// obstacle
vector trace_plane_normal;	// direction vector of trace (?)
float trace_plane_dist; 	// distance to impact along direction
// vector (?)
entity trace_ent; 		// entity hit by the line created by
// traceline(); valid only if
// trace_fraction != 1.0
float trace_inopen;		// Boolean, true if line went through non-
// water area.
float trace_inwater;		// Boolean, true if line went through
// water area.
10.4.	Combat Functions
10.4.1.	aim�xe "function:built-in:aim"�
vector aim(entity e, float missilespeed)
Returns a vector along which the entity e can shoot. Usually, e is a player, and the vector returned is calculated by auto aiming to the closest enemy entity.
10.4.2.	checkclient�xe "function:built-in:checkclient"�
entity checkclient()
Returns client (or object that has a client enemy) that would be a valid target. If there are more than one valid options, they are cycled each frame. If (self.origin + self.viewofs) is not in the PVS of the target, 0 (FALSE) is returned.
10.4.3.	particle�xe "function:built-in:particle"�
void particle(vector origin, vector dir, float color, float count)
Where: origin = initial position; dir = initial direction; color = color index (color = 0 for chunk, color = 75 for yellow, color = 73 for blood red, color = 225 for entity damage); count = time to live, in seconds.
Create a particle effect (small dot that flies away).
10.5.	Console Functions
10.5.1.	cvar�xe "function:built-in:cvar"�
float cvar(string console_variable)
Returns the value of a console variable. Note that this reads the console variables of the server only and cannot read the console variable of network server clients. Note also that some console variables cannot be read by cvar() at all�xe "bugs:cvar()"�, such as “maxplayers”.
10.5.2.	cvar_set�xe "function:built-in:cvar_set"�
float cvar_set(string console_variable, string value)
Sets the value of a console variable. Note: may set the cvar to zero�xe "bugs:cvar_set()"� when the string value contains leading spaces. This is confirmed behavior for DOSQuake 1.08 and WinQuake 1.0.

10.5.3.	dprint�xe "function:built-in:dprint"�
void dprint(string text)
Prints a message to the server console. This function only creates output if the “developer” console variable is set to 1. It was a bug�xe "bugs:dprint()"� in earlier versions of Quake that it worked even when “developer” was set to 0.
10.5.4.	localcmd�xe "function:built-in:localcmd"�
void localcmd(string text)
Execute a command on the server, as if it had been typed on the server's console. Don't forget the “\n�xe "\\n;#:as newline"�“ (newline) at the end in order to complete the command.
Examples:
localcmd("restart\n");		// restart the level
localcmd("teamplay 1\n");	// set deathmatch mode to teamplay
localcmd("killserver\n");	// poor server...�xe "localcmd():example of"�
10.6.	Debug Functions
10.6.1.	break�xe "function:built-in:break"�
void break()
Exit the programs.
10.6.2.	coredump�xe "function:built-in:coredump"�
void coredump()
Print all entities.
10.6.3.	eprint�xe "function:built-in:eprint"�
void eprint(entity e)
Print details about a given entity (for debug purposes).
10.6.4.	error�xe "function:built-in:error"�
void error(string text)
Print an error message.
10.6.5.	objerror�xe "function:built-in:objerror"�
void objerror(string text)
Print an error message related to object self.
10.6.6.	traceoff�xe "function:built-in:traceoff"�
void traceoff()
End traces started by traceon().
10.6.7.	traceon�xe "function:built-in:traceon"�
void traceon()
Start tracing functions, end them with traceoff().
10.7.	Entity Management Functions
10.7.1.	find�xe "function:built-in:find"�
entity find (entity start, .string field, string match)
Where: start = beginning of list to search (world, for the beginning of list); field = entity field that must be examined (ex: targetname); match = value that must be matched (ex: other.target).
Returns the entity found, or world if no entity was found. Searches the server entity list beginning at start, looking for an entity that has entity.field = match.
Example: find the first player entity
e = find(world, classname, "player");
Take care that field is a name of an entity field, without dot, and without quotes.
10.7.2.	findradius�xe "function:built-in:findradius"�
entity findradius(vector origin, float radius)
Where: origin = origin of sphere; radius = radius of sphere.
Returns a chain of entities that have their origins within a spherical area. The entity returned is e, and the next in the chain is e.chain, until e == FALSE. Typical usage: find and harm the victims of an explosion.
e = findradius(origin, radius)
while(e) { T_Damage(e, ...); e = e.chain }
10.7.3.	lightstyle�xe "function:built-in:lightstyle"�
void lightstyle(float style, string value)
Where: style = index of the light style, from 0 to 63; value = (ex: "abcdefghijklmlkjihgfedcb").
Modifies a given light style. The light style is used to create cyclic lighting effects, like torches or teleporter lighting. There are 64 light styles, from 0 to 63. If style is not strictly comprised in these values, the game may crash. Styles 32-62 are assigned by the light program for switchable lights. Value is a set of characters, whose ASCII value indicates a light level, from "a" (0) to "z" (30).
10.7.4.	makestatic�xe "function:built-in:makestatic"�
void makestatic (entity e)
Make an entity static to the world, by sending a broadcast message to the network. The entity is then removed from the list of dynamic entities in the world, and it cannot be deleted (until the level ends).
10.7.5.	nextent�xe "function:built-in:nextent"�
entity nextent(entity e)
Returns entity that is just after e in the entity list. Useful to browse the list of entities, because it skips the undefined ones.
10.7.6.	remove�xe "function:built-in:remove"�
void remove(entity e)
Removes an entity�xe "entity"� from the world.
10.7.7.	setmodel�xe "function:built-in:setmodel"�
void setmodel(entity e, string model)
Where: e = entity whose model is to be set; model = name of the model (ex: "progs/soldier.mdl").
Changes the model associated to an entity. This model should also be declared by precache_model. Please set e.movetype and e.solid first.
10.7.8.	spawn�xe "function:built-in:spawn"�
entity spawn()
Creates a new entity, totally empty. You can manually set every field, or just set the origin and call one of the existing entity setup functions.
10.8.	Movement Functions
10.8.1.	ChangeYaw�xe "function:built-in:ChangeYaw"�
void ChangeYaw()
Change the horizontal orientation of self. Turns towards self.ideal_yaw at self.yaw_speed, and sets the global variable current_yaw. Called every 0.1 sec by monsters.
10.8.2.	droptofloor�xe "function:built-in:droptofloor"�
float droptofloor()
Returns TRUE or FALSE.
Drops self to the floor, if the floor is less than -256 coordinates below. Returns TRUE if landed on floor. Mainly used to spawn items or walking monsters on the floor.
10.8.3.	movetogoal�xe "function:built-in:movetogoal"�
void movetogoal(float step)
Move self toward its goal. Used for monsters.
10.8.4.	setorigin�xe "function:built-in:setorigin"�
void setorigin(entity e, vector position)
Where: e = entity to be moved, position = new position for the entity.
Move an entity to a given location. That function is to be used when spawning an entity or when teleporting it. This is the only valid way to move an object without using the physics of the world (setting velocity and waiting). DO NOT change directly e.origin, otherwise internal links and entity clipping will be invalidated.
10.8.5.	setsize�xe "function:built-in:setsize"�
void setsize(entity e, vector min, vector max)
Where: e = entity whose bounding box is to be set; min = minimum, for bounding box (ex: VEC_HULL2_MIN); max = maximum, for bounding box (ex: VEC_HULL2_MAX).
Set the size of the entity bounding box, relative to the entity origin. The size box is rotated by the current angle.
10.8.6.	walkmove�xe "function:built-in:walkmove"�
float walkmove(float yaw, float dist)
Returns TRUE or FALSE. Moves self in the given direction. Returns FALSE if could not move (used to detect blocked monsters).
10.9.	Message Functions
10.9.1.	bprint�xe "function:built-in:bprint"�
void bprint(string text)
Broadcast a message to all players on the current server.

10.9.2.	centerprint�xe "function:built-in:centerprint"�
void centerprint(entity client, string text)
Sends a message to a specific player, and print it centered.
10.9.3.	sprint�xe "function:built-in:sprint"�
void sprint(entity client, string text)
Sends a message to a player.
10.10.	Network Messages�xe "message"�
QuakeC is not supposed to handle a lot of network messages, since most are already handled in C. However, built-in functions have not been built for every kind of message in the Quake protocol, so you might end-up composing protocol messages in QuakeC. It is recommended that you build a single function to handle a given message type, because the structure of those messages might change, and then all your code would have to be rewritten to compensate.
Beware: when generating messages, you had better respect the format of the existing messages, otherwise the game clients might not be able to interpret them (and will likely crash). The functions below all write to clients (players connected via the network or the local player).
For some reason, sending messages via MSG_ONE to a player that's just connected has no effect, as do messages sent via MSG_INIT. However, messages sent via MSG_ALL do get sent. Note that this also applies to sprint() (or any other function which uses a directed network message).
10.10.1.	WriteAngle�xe "function:built-in:WriteAngle"�
void WriteAngle(float to, float value)
This function writes a single byte, that represents 256 * (angle / 380).
10.10.2.	WriteByte�xe "function:built-in:WriteByte"�
void WriteByte(float to, float value)
10.10.3.	WriteChar�xe "function:built-in:WriteChar"�
void WriteChar(float to, float value)
10.10.4.	WriteCoord�xe "function:built-in:WriteCoord"�
void WriteCoord(float to, float value)
10.10.5.	WriteEntity�xe "function:built-in:WriteEntity"�
void WriteEntity(float to, entity value)
This function writes an entity reference, taking two bytes.
10.10.6.	WriteLong�xe "function:built-in:WriteLong"�
void WriteLong(float to, float value)
10.10.7.	WriteShort�xe "function:built-in:WriteShort"�
void WriteShort(float to, float value)
10.10.8.	WriteString�xe "function:built-in:WriteString"�
void WriteString(float to, string value)
This function writes a string, terminated by “\0“ (the null character in C).
10.11.	Precaching Functions
These functions are used to declare models, sounds and stuff, before the PAK file is built. Just follow this rule: whenever one of your functions makes use of a file that's not defined in Quake, precache this file in a function that will be called by worldspawn(). Then the QCC compiler can automatically include in the PAK file all the files that you really need to run your programs.
Once the level starts running, these precache orders will be executed, so as to attribute a fixed table index to all those files. DO NOT USE those functions in code that will be called after worldspawn() was called. As a matter of fact, that could bomb Quake (restarting the level, without crashing the game).
Files can only be precached in spawn functions.
10.11.1.	precache_file�xe "function:built-in:precache_file"�
void precache_file(string file)
Where: file = name of the file to include in PAK file.
Does nothing during game play. Use precache_file2() for registered Quake.
10.11.2.	precache_model�xe "function:built-in:precache_model"�
void precache_model(string file)
Where: file = name of the MDL or BSP file to include in PAK file.
Does nothing during game play. Must be used in a model's spawn function, to declare the model file. Use precache_model2() for registered Quake.
10.11.3.	precache_sound�xe "function:built-in:precache_sound"�
void precache_sound(string file)
Where: file = name of the WAV file to include in PAK file.
Does nothing during game play. Must be used in a model's spawn function, to declare the sound files. Use precache_sound2() for registered Quake.
10.12.	Server-related Functions
10.12.1.	changelevel�xe "function:built-in:changelevel"�
void changelevel(string mapname)
Warp to the game map named mapname. Actually executes the console command "changelevel" + mapname, so if you want to alias it...

10.12.2.	setspawnparms�xe "function:built-in:setspawnparms"�
void setspawnparms(entity client)
Restore the original spawn parameters of a client entity. Doesn't work if client is not a player.
10.12.3.	stuffcmd�xe "function:built-in:stuffcmd"�
stuffcmd(entity client, string text)
Send a command to a given player, as if it had been typed on the player's console. Mostly used to send the command ”bf“, that creates a flash of light on the client's screen. Don't forget the “\n�xe "\\n;#:as newline"� “ (newline) at the end, otherwise your command will not be executed, and will stand still on the console window.
Examples:
stuffcmd(self, "bf\n");
stuffcmd(self, "name Buddy\n");
10.13.	Sound Functions
10.13.1.	ambientsound�xe "function:built-in:ambientsound"�
void ambientsound(vector position, string sample, float volume, float attenuation)
Where: position = position, in 3D space, inside the level; sample = name of the sample WAV file (ex: "ogre/ogdrag.wav"); volume = 0.0 for low volume, 1.0 for maximum volume; attenuation = attenuation of sound.
An ambient sound is emitted, from the given position.
10.13.2.	sound�xe "function:built-in:sound"�
void sound(entity�xe "entity"� source, float channel, string sample, float volume, float attenuation)
Where: source = entity emitting the sound (ex: self); channel = channel to use for sound; sample = name of the sample WAV file (ex: "ogre/ogdrag.wav"); volume = 0.0 for low volume, 1.0 for maximum volume; attenuation= attenuation of sound.
The entity emits a sound, on one of its 8 channels.
�11.	Functions That Are Mandatory in QuakeC
These functions must be defined in QuakeC, since they are invoked by Quake under certain conditions.
11.1.	Behavior of Players
11.1.1.	PlayerPostThink�xe "function:mandatory:PlayerPostThink"�
void PlayerPostThink();
Called with self = player, for every frame, after physics are run.
11.1.2.	PlayerPreThink�xe "function:mandatory:PlayerPreThink"�
void PlayerPreThink();
Called with self = player, for every frame, before physics are run.
11.2.	Management of Network Game Clients
11.2.1.	ClientConnect�xe "function:mandatory:ClientConnect"�
void ClientConnect();
Called when a player connects to a server, but also, for every player, when a new level starts. It is used to announce the new player to every other player.
11.2.2.	ClientDisconnect�xe "function:mandatory:ClientDisconnect"�
void ClientDisconnect();
Called when a player disconnects from a server. Announce that the player has left the game.
11.2.3.	ClientKill�xe "function:mandatory:ClientKill"�
void ClientKill();
Called when a player suicides.
11.2.4.	PutClientInServer�xe "function:mandatory:PutClientInServer"�
void PutClientInServer();
Called after setting parm1... parm16.
11.2.5.	SetChangeParms�xe "function:mandatory:SetChangeParms"�
void SetChangeParms();
Call to set parms for self so they can be restored.
11.2.6.	SetNewParms�xe "function:mandatory:SetNewParms"�
void SetNewParms();
Called when a client first connects to a server. Sets parm1...parm16 so that they can be saved off for restarts.
11.3.	Miscellaneous
11.3.1.	main�xe "function:mandatory:main"�
void main();
Only used for testing progs.
11.3.2.	StartFrame�xe "function:mandatory:StartFrame"�
void StartFrame();
Called at the start of each frame.
1.	�12.	Network Protocol
12.1.	Message Structures�xe "message"�
Here are some of the messages defined in the Quake network protocol. Beware, the structure of those messages might change in future version (Satan forbid!).
12.1.1.	Set View Position�xe "message:Set View Position"�
msg_entity = player
WriteByte(MSG_ONE, SVC_SETVIEWPORT);
WriteEntity(MSG_ONE, camera);
This message is meant for a single client player. It sets the view position to the position of the entity camera.
12.1.2.	Set View Angles�xe "message:Set View Angles"�
msg_entity = player
WriteByte(MSG_ONE, SVC_SETVIEWANGLES);
WriteAngle(MSG_ONE, camera.angles_x);
WriteAngle(MSG_ONE, camera.angles_y);
WriteAngle(MSG_ONE, camera.angles_z);
This message is meant for a single client player. It sets the orientation of its view to the same orientation as the entity camera.
12.1.3.	Temporary Entity�xe "message:Temporary Entity"�
WriteByte(MSG_BROADCAST, SVC_TEMPENTITY);
WriteByte(MSG_BROADCAST, entityname);
WriteCoord(MSG_BROADCAST, origin_x);
WriteCoord(MSG_BROADCAST, origin_y);
WriteCoord(MSG_BROADCAST, origin_z);
12.1.4.	Set CD Track�xe "message:Set CD Track"�
WriteByte(MSG_ALL, SVC_CDTRACK);
WriteByte(MSG_ALL, val1);	// CD start track
WriteByte(MSG_ALL, val2);	// CD end track
12.1.5.	Final Message�xe "message:Final Message"�
WriteByte(MSG_ALL, SVC_FINALE);
WriteString(MSG_ALL, "any text you like\n");
12.1.6.	Sell Screen�xe "message:Sell Screen"�
WriteByte(MSG_ALL, SVC_SELLSCREEN);
Shows the infamous sell screen (like you needed it to understand).
12.1.7.	Intermission�xe "message:Intermission"�
WriteByte(MSG_ALL, SVC_INTERMISSION);
Shows the intermission camera view.
12.1.8.	Killed Monster�xe "message:Killed Monster"�
WriteByte(MSG_ALL, SVC_KILLEDMONSTER);
Increase by one the count of killed monsters, as available to the client.
12.1.9.	Found Secret�xe "message:Found Secret"�
WriteByte(MSG_ALL, SVC_FOUNDSECRET);
Increase by one the count of secrets founds.
1.	�13.	Execution
Code execution�xe "execution"� is initiated by C code in quake from two main places: the timed think�xe "function:think"� routines for periodic control and the touch�xe "function:touch"� function when two objects impact each other. Execution is also caused by a few uncommon events, like the addition of a new client to an existing server.
The interpretation is fairly efficient, but it is still over an order of magnitude slower than compiled C code. All time-consuming operations should be made into built-in functions.
13.1.	Preset Globals�xe "global:preset"�
There are three global variables that are set before beginning code execution:
entity	world;			// the server's world object, which holds all
// global state for the server, like the
// deathmatch flags and the body queues.
entity	self;			// the entity the function is executing for
entity	other;			// the other object in an impact, not used for
// thinks
float	time;			// the current game time. Note that because the
// entities in the world are simulated
// sequentially, time is NOT strictly increasing.
// An impact late in one entity's time slice may
// set time higher than the think function of the
// next entity. The difference is limited to 0.1
// seconds.
It is acceptable to change the system set global variables�xe "variable:global"�. This is usually done to pose as another entity by changing self and calling a function.
13.2.	Runaways
There is a runaway counter�xe "runaway counter"� that stops a program if 100000 statements are executed, assuming it is in an infinite loop.
13.3.	Profiling�xe "Profiling"�
A profile counter is kept for each function, and incremented for each interpreted instruction inside that function. The "profile�xe "profiling:profile"�" console command in Quake will dump out the top 10 functions, then clear all the counters. The "profile all�xe "profiling:profile all"�" command will dump sorted statistics for every function that has been executed.
13.4.	Composition of Functions�xe "composition of functions"�
Composition of functions is not supported since all the functions use a single parameter marshaling area and a single global variable�xe "variable:global"� to store their return result. You should NEVER try to call a function within another function call. For example:
afunc(4, bfunc(1,2,3));
will fail because there is a shared parameter marshaling area, which will cause the 1 from bfunc to overwrite the 4 already placed in parm0. When a function is called, it copies the parameters from the globals into its privately scoped variables, so there is no collision when calling another function.
total = factorial(3) + factorial(4);
will fail because the return value from functions is held in a single global area
However, the following will work:
dprint(ftos(self.impulse));
This appears to be only composite function allowed.
13.5.	Program Flow
The following diagrams show the more common program flows during particular client events and states. Of particular interest is the handling of new clients, which is an event distinguishable from a level change only in the state of the client entity variables, the execution flows are identical (and as a result, care should be taken in storing/recalling client state across respawns and levels).
13.5.1.	Client Connection/Changelevel
�
13.5.2.	Suicide
�
13.5.3.	Death
�
13.5.4.	Respawn
�
�14.	Tips & Tricks
14.1.	QuakeC
�You cannot initialize a variable�xe "variable:initializing"� with default values
If you give a default value to a QuakeC variable, this variable will be considered as a constant�xe "constant"�. The value of such a constant may be changed, but it will be set to its initial value on level changes and restarts. Only real global variables�xe "variable:global"� before “end_sys_globals” in DEFS.QC keep their values on level changes and restarts (like parm1…parm16).�
Constants cannot be given the value of a constant
Constants must be given the value of a literal only. Constants set equal to the value of another constant will return unpredictable results.
Coordinates�xe "coordinates"� are relative to the world
All the geometry (coordinate positions, directions, angles) are relative to the world. They are never relative to a given object. To know the direction an object is facing, you have to require calculation of the v_front vector (respectively v_right and v_up for the right top).
14.2.	Compilation of QuakeC
The language is strongly typed and there are no casts.
Source files are processed sequentially without dumping any state, so if a file is the first one processed, the definitions in that file will be available to all subsequent files. Nothing may be references without first defining it.. Names can be defined multiple times until they are defined with an initialization, allowing functions to be prototyped before their definition.
Error recovery during compilation is minimal. It will skip to the next global definition, so you will never see more than one error at a time in a given function. All compilation aborts after ten error messages.
Beware of the QuakeC compiler!
14.3.	Frequently Asked Questions about QuakeC
14.3.1.	How do I combine QuakeC patches?
Despite what some people may tell you, QuakeC patches may not be combined by using multiple “–game�xe "command line parameters:–game"�” parameters on the command line, nor by using multiple PROGS.DAT�xe "PROGS.DAT"� files. The only way to combine patches is to get the QuakeC source for both patches, and combine the code by hand. This typically requires some expertise with QuakeC, and is generally not an easy task, given that much QuakeC code is uncommented, messy, and poorly documented.
14.3.2.	When I compile valid code, the QuakeC compiler crashes, or I get error messages I know are false, what’s wrong?
The QuakeC compiler has certain values hard-coded into it, such as the maximum number of globals�xe "variable:global"�. Chances are, you code has exceeded this limit. According to Dave "Zoid" Kirsch, the crash-and-burn behavior of the compiler doesn't mean you're out of luck:
"Compiler ran out of globals. You need to edit MAX_GLOBALS�xe "MAX_GLOBALS"� in one of the QCC.H�xe "QCC.H"� file for qcc�xe "qcc"� and build a new qcc. Quake will load up the progs fine. It's a qcc thing, not a quake thing."
Lee Smith, the author of ProQCC�xe "ProQCC"�, has modified the latest version (v1.52) with larger table sizes in order to work around the problem.
14.3.3.	When I start a game with “-dedicated”, I get some messages, then nothing. What’s wrong?
Nothing is wrong. What is happening is that when the “-dedicated�xe "command line parameters:-dedicated"�” parameter is specified, the game starts in console mode only. The messages you are seeing are the diagnostic and precache commands that are executed when the server starts. If you want some information on what the server is doing at this point, you can type “status” at the console.
For somewhat similar reasons, you can ignore the warnings about “viewsize”, “joystick”, etc. commands. They do not have any meaning in the “-dedicated�xe "command line parameters:-dedicated"�” context, and the Quake engine rejects them out of hand, generating the warnings.
14.3.4.	How do I change the viewpoint?
You would like that a given player sees through the eyes of another entity. This commonly happens at the end of the level (all players see through a camera), or when the player head is severed (gibbed), or when a player is invisible (he only exists as his eyes).
But the example above works by changing the player entity, and what you want is probably just to see through a camera (Duke3D) or a missile (Descent).
This operation is known in the Quake network protocol as a setview�xe "setview"� message. But nowhere is it defined in QuakeC, and there's no function to change the view port. So the solution is to encode a set view port message, followed by a set view angles message (to take the orientation of the camera). This works fine, except that if for some reason the entity you are using as a camera was not previously declared to the client, then the view port will be set to '0 0 0', which is usually somewhere in the void.
14.3.5.	How do I teleport a player into another server?
Not really, although you can use a few tricks to make something like it.
First, create an entity, such as a slipgate, and set its touch field to the following function:
void() changeserver = {
 // set the entity touch function to point here
 // other = entity that touched
 if(other.classname == "player") stuffcmd(other, "connect server.address\n");
};
When the slipgate is touched, the entity jumps to another server by virtue of the stuffcmd(). However, the player stats and weapons will not be preserved, and the player would be dumped to the console if the other server were full or not available, which makes it of little use.
14.3.6.	Can QuakeC bots be listed in the player rankings, or have proper shirt and pants colors?
Yes, but it requires a hack of the Quake network protocol. The bot must be assigned a client number from the pool available (there are maxplayers client numbers). The obvious downside to this is that is requires the bot to take a slot that ordinarily would be available for a human player.
Once the bot has it’s own client number, it can be assigned it’s own colormap and broadcast it’s name and frags to the clients. Note that since the bot is not really a client, every time the bot’s colors, name, or frag count changes, the change must be forced by sending out another broadcast message.
Alan Kivlin (alan.kivlin@cybersurf.co.uk) has an example of how this might be accomplished in his QCBot. Quaker Server Modifications http://gue-tech.asee.org/quake/qkrmods/ uses this same trick to place CTF Bots in the player rankings screen.
14.3.7.	How do I manipulate strings in QuakeC?
Well, you can have any kind of strings as long as they cannot be changed, since, PR_COMP.C�xe "PR_COMP.C"�, defines only operations “=”, “==”, and “!=” on strings.
14.3.8.	How do I assemble a piecewise centerprint()�xe "function:built-in:centerprint"��xe "centerprint"� from multiple strings?
In the DEFS.QC�xe "DEFS.QC"� file, after the lines:
// sprint, but in middle
void(entity client, string s) centerprint = #73;
Insert the following function definitions, all pointing to the same built-in function immediate:
void(entity client, string s1, string s2) centerprint2 = #73;
void(entity client, string s1, string s2, string s3) centerprint3 = #73;
void(entity client, string s1, string s2, string s3, string s4) centerprint4 = #73;
void(entity client, string s1, string s2, string s3, string s4, string s5) centerprint5 = #73;
void(entity client, string s1, string s2, string s3, string s4, string s5, string s6) centerprint6 = #73;
void(entity client, string s1, string s2, string s3, string s4, string s5, string s6, string s7) centerprint7 = #73;
You are limited to assembling up to seven strings, since the maximum number of parameters in a QuakeC function is eight (one is consumed by the pointer to the target entity).
14.3.9.	How do I move an entity�xe "entity"� in QuakeC?
You have better not touch it's position fields, else some stuff in the C code might not be valid anymore. Use the setposition() built-in function to move an entity.
14.3.10.	How to change the velocity of an entity�xe "entity"� (make it bounce off walls)?
Information by Greg Lewis.
It seems that an entity�xe "entity"�'s velocity can't be changed in the Touch function of the entity. Making the calculations there will be of no use. So just set entity.movetype to MOVETYPE_BOUNCE, entity.nextthink to 0.1 (to let it bounce off), and set entity.think to the name of a function that, when called 0.1 second later, will set entity.velocity to the right direction.
14.3.11.	How to calculate the direction a player is facing�xe "facing"�?
Assuming the player is self, the entity field self.angles contains the orientation angles of the player (as set by moving the mouse).
Then the function makeverctors(self.angles) will calculate three vectors, that point in the direction the player is facing, but also to the right of the player (strafing direction) and to the direction the player is standing.
Note that those vectors are normalized to 1, so if you want to know what lays 100 units in front of the player, use self.origin + 100 * facing.
14.3.12.	How to send a message to a client when he logs in?
It has been noticed that using a sprint() in function ClientConnect() just plain doesn't send any message at all. Maybe the client is not ready to receive messages at this point.
However, Doug Keenan (doug.keegan@tamu.edu) has reported he could send such a text message by putting the sprint() close to the beginning of the ClientConnect() function. It doesn't work at the end apparently.
14.4.	Writing QuakeC Code
Here are some suggestions that you should really consider when writing QuakeC code that would make life simpler for others when they read your code (and also for you to maintain it).
You want to develop code that others can re-use, or that can be mixed seamlessly with code written by others. If you are reinventing the whole world all by yourself, you hardly need any help or counsel (by the way, the first command is “+light”).
Please put comments in your code. Of course, the real gurus don't need comments. They understand raw QuakeC, even compiled. They can even imagine all the parts of your code before they read them. Even before you write them. But actually, they seldom read your code. Only normal people do.
Please tag the beginning and end of your modifications if you are fixing a code from someone else. Also put a date, and put a reason for the fix.
Each time you create a new function, a new variable or a new field, please give it a name that will not conflict with a function or variable defined by others. A rather sure way to do this is to prefix every name with some abbreviated module name, or your initials, or whatever rare combination of three or four letters.
Each time you implement some set of related functions, you should create a new QuakeC module, and give it a name different from the existing ones. Please do not use one of the module names used by id Software, this would be confusing. Try to be original, else we might end-up with two hundred modules called IMPULSE.QC.
When you want to distribute some modified QuakeC programs: include a FILE_ID.DIZ file explaining in about five lines what your patch does, and where it should be stored in the archives (this file is to be read by system administrators), a README.TXT file explaining in detail what your patch does, how it does it, and what common files you had to modify. Include the .QC modules that you created from scratch.
Consider distributing your patches as diff-style patch files.
You should compile and distribute a version of your code, as a single PROGS.DAT file, to be used by those who just wanna have fun. Don't forget them, they largely outnumber the people who directly deal with QuakeC.
Upload your QuakeC patches to the primary quake ftp site at ftp.cdrom.com. Be sure to follow the submission guidelines posted there.
�Index
� INDEX \e "	" \a \h "A" \c "2" ��#
"
as escaped quotation mark	7
#
as built-in function immediate	3
*/
as extended comment close	4
/*
as extended comment open	4
//
as comment	4
\n
as newline	3, 7, 40, 46
‘
as vector brackets	3
A
assignment_statement	See statement:assignment
B
bugs
cvar()	39
cvar_set()	39
dprint()	40
parsing ambiguity	7
C
centerprint	59
command line parameters
-dedicated	57
–game	56
comment	4
example of	4
extended	4
composition of functions	52
compound_statement	See statement:compound
condition
defined	12
constant	9, 56
declaration of	9
predefined	14
coordinates	56
D
damage	17
death	18
DEFS.QC	8, 59
delimiter	2
compound	2
E
entity	7, 8, 17, 23, 25, 38, 42, 46, 59
declaration of	7
dynamic	25
creating	25
maximum number of	25
removing	25
field	31
.damage	17
.deadflag	18
.effects	20
.items	15
.movetype	17
.nextthink	28
.solid	16
.spawnflags	19
example of	8
predefined	26
sharing	31
memory consumption	31
sequencing	23
static	25
creating	25
temporary	14, 25
execution	51
expression	10
F
facing	59
file types
.LBM	6
.MDL	5
function
built-in	36
aim	39
ambientsound	46
anglemod	36
bprint	43
break	40
ceil	36
centerprint	43, 59
changelevel	45
ChangeYaw	42
checkbottom	38
checkclient	39
checkpos	38
coredump	40
cvar	39
cvar_set	39
dprint	40
droptofloor	42
eprint	40
error	40
fabs	36
find	41
findradius	41
floor	36
ftos	36
lightstyle	41
localcmd	40
makestatic	42
makevectors	37
movetogoal	43
nextent	42
normalize	37
objerror	40
particle	39
pointcontents	38
precache_file	45
precache_model	45
precache_sound	45
random	36
remove	42
rint	36
setmodel	42
setorigin	43
setsize	43
setspawnparms	45
sound	46
spawn	42
sprint	43
stuffcmd	46
traceline	38
traceoff	41
traceon	41
vectoangles	37
vectoyaw	37
vlen	37
vtos	37
walkmove	43
WriteAngle	44
WriteByte	44
WriteChar	44
WriteCoord	44
WriteEntity	44
WriteLong	44
WriteShort	44
WriteString	44
frame	13
equivalence	13
specification	13
mandatory
ClientConnect	47
ClientDisconnect	47
ClientKill	47
main	48
PlayerPostThink	47
PlayerPreThink	47
PutClientInServer	47
SetChangeParms	47
SetNewParms	48
StartFrame	48
parameter	8
specification	13
think	51
touch	51
function_calls	See function:call
G
global	See variable:global
preset	51
I
identifier	2
case-sensitivity of	3
limitations on	3
if_statement	See statement:if
immediate	See constant
integer_literal	See literal:numeric:integer
items	15
L
lexical element	2
lighting	20
literal	3
numeric	2, 3
integer	3
example of	3
real	3
example of	3
vector	3
example of	3
string	2, 3
example of	3
local	8
localcmd()
example of	40
loop_statement	See statement:loop
M
MAX_GLOBALS	57
message	44, 49
Final Message	50
Found Secret	50
Intermission	50
Killed Monster	50
Sell Screen	50
Set CD Track	49
Set View Angles	49
Set View Position	49
Temporary Entity	49
messages	20
reliable	20
routing	20
types	21
unreliable	20
modelgen	5, 6
movement	17
N
name	10
newline	See \n
numeric_literal	See literal:numeric
O
operator	10
binary	10
evaluation	10
logical	10
mulplication	11
precedence	10
relational	10
unary	11
P
PR_COMP.C	58
pragma	5
$base	5
$cd	5
$flags	5
$frame	5, 26
$modelname	5
$origin	5
$scale	5
$skin	6
procedure	13
specification	13
profiling
profile	51
profile all	51
Profiling	51
PROGS.DAT	56
PROGS106.ZIP	1
ProQCC	1, 57
Q
qcc	57
QCC.H	57
qcc.tar.gz	1
QCCDOS.EXE	1
R
real_literal	See literal:numeric:real
runaway counter	51
S
scoping	8
separator	2
end of line	2
space	2
setview	57
simple_statement	See statement:simple
solid objects	16
sound	21
attenuation	21
channel	21
spawnflags	19
spawnparms	24
special characters	2
statement	12
assignment	12
defined	12
compound	12
if	12
declaration of	12
loop	12
simple	12
while
declaration of	12
states	See function:frame
string_literal	See literal; string
subprogram
calling	13
declaration of	13
declaration requirement	13
limitations on calling parameters	13
limitations on formal parameters	13
specification	See function, procedure
subprogram_declaration	See subprogram:declaration of
T
texmake	5, 6
time	23
type	7
Boolean	See type:floating point
entity	7
field	8
reserved	8
floating point	7
declation of	7
string	7
declaration of	7
vector	7
declaration of	7
fields	7
void	7
types
defining new	7
V
variable	8
declaration of	8
global	8, 9, 51, 52, 56, 57
predefined	22
coop	22
deathmatch	22
force_retouch	22
found_secrets	22
frametime	22
killed_monsters	22
mapname	22
msg_entity	23
other	23
parm1…parm16	23
self	23
serverflags	23
teamplay	23
time	23
total_monsters	23
total_secrets	23
world	24
initializing	56
vector_literal	See literal:numeric:vector
W
whitespace	2, 4
��
�PAGE �iii�

PlayerDeathThink()

